Applying ACO To Large Scale TSP Instances
نویسنده
چکیده
Ant Colony Optimisation (ACO) is a well known metaheuristic that has proven successful at solving Travelling Salesman Problems (TSP). However, ACO suffers from two issues; the first is that the technique has significant memory requirements for storing pheromone levels on edges between cities and second, the iterative probabilistic nature of choosing which city to visit next at every step is computationally expensive. This restricts ACO from solving larger TSP instances. This paper will present a methodology for deploying ACO on larger TSP instances by removing the high memory requirements, exploiting parallel CPU hardware and introducing a significant efficiency saving measure. The approach results in greater accuracy and speed. This enables the proposed ACO approach to tackle TSP instances of up to 200K cities within reasonable timescales using a single CPU. Speedups of as much as 1200 fold are achieved by the technique.
منابع مشابه
Solving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملSolving the Traveling Salesman Problem by an Efficient Hybrid Metaheuristic Algorithm
The traveling salesman problem (TSP) is the problem of finding the shortest tour through all the nodes that a salesman has to visit. The TSP is probably the most famous and extensively studied problem in the field of combinatorial optimization. Because this problem is an NP-hard problem, practical large-scale instances cannot be solved by exact algorithms within acceptable computational times. ...
متن کاملA memetic ant colony optimization algorithm for the dynamic travelling salesman problem
Ant colony optimization (ACO) has been successfully applied for combinatorial optimization problems, e.g., the travelling salesman problem (TSP), under stationary environments. In this paper, we consider the dynamic TSP (DTSP), where cities are replaced by new ones during the execution of the algorithm. Under such environments, traditional ACO algorithms face a serious challenge: once they conv...
متن کاملOn Optimal Parameters for Ant Colony Optimization Algorithms
Ant Colony Optimization (ACO) is a metaheuristic introduced by Dorigo et al. [9] which uses ideas from nature to find solutions to instances of the Travelling Salesman Problem (TSP) and other combinatorial optimisation problems. In this paper we analyse the parameter settings of the ACO algorithm. These determine the behaviour of each ant and are critical for fast convergence to near optimal so...
متن کاملA new hybrid heuristic approach for solving large traveling salesman problem
This study presents a novel problem called green travelling salesman problem (GTSP), an extension of the classical travelling salesman problem (TSP). Proposed GTSP considers not just for the route distance, also accounts emitted CO2, consumed fuel, travelling times/speed and their costs with a more comprehensive objective function. The aim of this study is to shed light on the trade-offs betwee...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1709.03187 شماره
صفحات -
تاریخ انتشار 2017